Hyperbaric oxygen therapy might improve certain pathophysiological findings in autism.

Rossignol DA.

University of Virginia, Department of Family Medicine, P.O. Box 800729, Charlottesville, VA 22908, USA. dlross7@hotmail.com

Abstract
Autism is a neurodevelopmental disorder currently affecting as many as 1 out of 166 children in the United States. Numerous studies of autistic individuals have revealed evidence of cerebral hypoperfusion, neuroinflammation and gastrointestinal inflammation, immune dysregulation, oxidative stress, relative mitochondrial dysfunction, neurotransmitter abnormalities, impaired detoxification of toxins, dysbiosis, and impaired production of porphyrins. Many of these findings have been correlated with core autistic symptoms. For example, cerebral hypoperfusion in autistic children has been correlated with repetitive, self-stimulatory and stereotypical behaviors, and impairments in communication, sensory perception, and social interaction. Hyperbaric oxygen therapy (HBOT) might be able to improve each of these problems in autistic individuals. Specifically, HBOT has been used with clinical success in several cerebral hypoperfusion conditions and can compensate for decreased blood flow by increasing the oxygen content of plasma and body tissues. HBOT has been reported to possess strong anti-inflammatory properties and has been shown to improve immune function. There is evidence that oxidative stress can be reduced with HBOT through the upregulation of antioxidant enzymes. HBOT can also increase the function and production of mitochondria and improve neurotransmitter abnormalities. In addition, HBOT upregulates enzymes that can help with detoxification problems specifically found in autistic children. Dysbiosis is common in autistic children and HBOT can improve this. Impaired production of porphyrins in autistic children might affect the production of heme, and HBOT might help overcome the effects of this problem. Finally, HBOT has been shown to mobilize stem cells from the bone marrow to the systemic circulation. Recent studies in humans have shown that stem cells can enter the brain and form new neurons, astrocytes, and microglia. It is expected that amelioration of these underlying pathophysiological problems through the use of HBOT will lead to improvements in autistic symptoms. Several studies on the use of HBOT in autistic children are currently underway and early results are promising.