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Abstract 
Background 
Recently, hyperbaric oxygen therapy (HBOT) has increased in popularity as a treatment for autism. 
Numerous studies document oxidative stress and inflammation in individuals with autism; both of these 
conditions have demonstrated improvement with HBOT, along with enhancement of neurological function 
and cognitive performance. In this study, children with autism were treated with HBOT at atmospheric 
pressures and oxygen concentrations in current use for this condition. Changes in markers of oxidative 
stress and inflammation were measured. The children were evaluated to determine clinical effects and 
safety. 
 
Methods 
Eighteen children with autism, ages 3–16 years, underwent 40 hyperbaric sessions of 45 minutes duration 
each at either 1.5 atmospheres (atm) and 100% oxygen, or at 1.3 atm and 24% oxygen. Measurements of C-
reactive protein (CRP) and markers of oxidative stress, including plasma oxidized glutathione (GSSG), 
were assessed by fasting blood draws collected before and after the 40 treatments. Changes in clinical 
symptoms, as rated by parents, were also assessed. The children were closely monitored for potential 
adverse effects. 
 
 
 



Results 
At the endpoint of 40 hyperbaric sessions, neither group demonstrated statistically significant changes in 
mean plasma GSSG levels, indicating intracellular oxidative stress appears unaffected by either regimen. A 
trend towards improvement in mean CRP was present in both groups; the largest improvements were 
observed in children with initially higher elevations in CRP. When all 18 children were pooled, a 
significant improvement in CRP was found (p = 0.021). Pre- and post-parental observations indicated 
statistically significant improvements in both groups, including motivation, speech, and cognitive 
awareness (p < 0.05). No major adverse events were observed. 
 
Conclusion 
In this prospective pilot study of children with autism, HBOT at a maximum pressure of 1.5 atm with up to 
100% oxygen was safe and well tolerated. HBOT did not appreciably worsen oxidative stress and 
significantly decreased inflammation as measured by CRP levels. Parental observations support anecdotal 
accounts of improvement in several domains of autism. However, since this was an open-label study, 
definitive statements regarding the efficacy of HBOT for the treatment of individuals with autism must 
await results from double-blind, controlled trials. 
 
Trial Registration 
clinicaltrials.gov NCT00324909 
 
Background 
Autism is a neurodevelopmental disorder currently affecting as many as 1 out of 150 individuals in the 
United States [1]. Autism is characterized by impairments in social interaction, difficulty with 
communication, and restrictive and repetitive behaviors [2]. Autism traditionally is considered a "static" 
neurological disorder [3] and improvements in core autistic features are not common [4,5]. Furthermore, 
three rigorously performed epidemiological studies demonstrate that the prevalence of autism has increased 
in recent years [6-8]. These facts might explain why parents of children with autism are more likely to seek 
alternative and off-label medical therapies than parents of children in the general population [9]. One off-
label therapy that has recently increased in popularity as a treatment for autism is hyperbaric oxygen 
therapy (HBOT) [10,11]. Traditionally, HBOT involves inhaling up to 100% oxygen at a pressure greater 
than one atmosphere (atm) in a pressurized chamber [12]. Most typical indications for HBOT involve the 
use of hyperbaric pressures above 2.0 atm. Higher atmospheric pressures are generally required to treat 
conditions such as carbon monoxide poisoning and to improve wound healing [12,13]. 
In some studies, the use of oxygen appears to enhance neurological function. For instance, in a double-
blind, placebo-controlled, cross-over study, oxygen administration in healthy young adults, when compared 
to room air, was demonstrated to enhance cognitive performance, including improved performance on 
attention, reaction times, and word recall [14]. Additionally, in elderly patients, HBOT at 2.5 atm and 
100% oxygen, when compared to a control group, improved cognitive function, including memory [15]. 
Because of these outcomes, some investigators have used HBOT to treat certain neurological disorders, 
including chronic and traumatic brain injury [16-22], as well as fetal alcohol syndrome [23], and clinical 
improvements in these patients have been observed. Furthermore, in a recent rat model of traumatic brain 
injury, treatment with HBOT at 1.5 atm and 100% oxygen, when compared to a sham-treated normobaric 
air group, improved spatial learning and memory [24]. Several studies, using HBOT at similar pressures, 
also demonstrated clinical improvements in some patients with cerebral palsy (CP) [25-28] that in some 
cases was dramatic [29]; however, some researchers have questioned the results of these studies and have 
called for further controlled trials and a focus on defining the mechanism of action of HBOT in individuals 
with CP [30]. It is important to note that some of these studies [16,21-24,26] used lower hyperbaric 
pressures (1.5 atm or less) than the pressures typically used for most clinical indications [13]. Given this 
background, some physicians have also applied similar lower hyperbaric pressures of 1.3 to 1.5 atm in 
autistic individuals, with oxygen concentrations ranging from 21% to 100% [10,31]. 
HBOT for children is generally regarded as safe, even at pressures of 2.0 atm for 2 hours per day [32]. 
However, to our knowledge, the safety of HBOT for autistic children has not been previously studied; a 
review of MEDLINE indicates that there are no prospective studies on the use of HBOT for autism. Yet, 
there are anecdotal reports of clinical improvements in autistic children with hyperbaric therapy that have 



been reported by some physicians. For instance, Heuser et al. treated a four year old child with autism using 
hyperbaric therapy at 1.3 atm and 24% oxygen and reported "striking improvement in behavior including 
memory and cognitive functions" after only ten sessions. This child also had marked improvement of 
cerebral hypoperfusion as measured by pre-hyperbaric and post-hyperbaric Single Photon Emission 
Computed Tomography (SPECT) scans [31]. Another case series suggested that hyperbaric therapy at 1.3 
atm led to clinical improvements in six autistic children [10]. 
Review of the pathophysiology found in some autistic individuals in conjunction with the mechanisms of 
action of HBOT lead to the speculation that HBOT might produce clinical improvements in autistic 
individuals [11]. Several studies indicate that some autistic individuals manifest cerebral hypoperfusion 
[33-35], neuroinflammation [36-38], and gastrointestinal inflammation [39,40]. HBOT might ameliorate 
some of these problems by improving cerebral hypoperfusion [17,21,31,41], and by decreasing 
neuroinflammation and gastrointestinal inflammation [42-47]. However, no prospective studies have 
examined the role of HBOT on inflammation and cerebral hypoperfusion in autistic individuals. 
Furthermore, concerns exist that HBOT might increase oxidative stress via the production of reactive 
oxygen species [48]. These concerns are especially relevant because some children with autism express 
evidence of increased oxidative stress [49] including lower serum glutathione levels [50,51], and decreased 
activities of antioxidant enzymes including superoxide dismutase (SOD) [52], glutathione peroxidase [52], 
catalase [53], and paraoxonase, an enzyme that prevents lipid oxidation and also inactivates 
organophosphate toxins in humans [54]. Some autistic children also demonstrate evidence of increased 
lipid peroxidation [53,55,56]; this includes increased malondialdehyde which is a marker of oxidative stress 
and lipid peroxidation [57]. A review of the literature indicates that oxidative stress can occur with HBOT 
but appears to be less of a concern at hyperbaric pressures under 2.0 atm [58]. In fact, with long-term and 
repeated administration, HBOT below 2.0 atm can actually decrease oxidative stress [59-61] by reducing 
lipid peroxidation [62], and by up-regulating the activity of antioxidant enzymes including SOD [60,63], 
glutathione peroxidase [64], catalase [65], and paraoxonase [62,66]. Furthermore, at the pressures 
examined in this current study (1.3 to 1.5 atm), a search of the literature failed to identify any studies 
indicating that oxidative stress worsened with HBOT. 
Alternatively, some evidence suggests that HBOT could actually alleviate oxidative stress in children with 
autism. For example, halving oxygen concentrations in normal healthy volunteers results in relative 
hypoxia and actually increases oxidative stress [67]. There are several studies that demonstrate evidence of 
cerebral hypoxia, as measured by a reduction in brain Bcl-2 and an increase in brain p53, among some 
autistic individuals [68-71]. Elevated p53 is induced by hypoxia [72] and a decrease in Bcl-2 is associated 
with increased apoptosis provoked by hypoxia [73]. Therefore, in theory, improving hypoxic areas in the 
autistic brain might decrease oxidative stress. However, the effects of HBOT on oxidative stress in autistic 
individuals are unknown. To our knowledge, there have been no studies performed which examine the role 
of HBOT on oxidative stress in autistic children. 
This present study examined hyperbaric therapy at the low and the high ends of the ranges of atmospheric 
pressures and oxygen concentrations currently employed in individuals with autism: 1.3 atm and 24% 
oxygen [31], and 1.5 atm and 100% oxygen. This study had several objectives. First, since increased 
oxidative stress is found in some autistic children, the effects of HBOT on oxidative stress markers before 
and after 40 hyperbaric treatments were measured. Second, evidence of increased inflammation is found in 
many autistic individuals. HBOT is also known to have anti-inflammatory effects; therefore, the impact of 
HBOT on an inflammatory marker (C-reactive protein) was measured. Third, since the efficacy of HBOT 
in autism has not been previously evaluated, this current open-label pilot study (without a placebo-control 
group) examined the changes in clinical symptoms, as rated by parents or caregivers, after treatment with 
HBOT. Finally, the safety of HBOT, used at 1.3 and 1.5 atm, was evaluated in autistic children. 
 
Methods 
 
Patients 
Eighteen children, 4 girls and 14 boys, ages ranging 3 to 16 years, were assessed for participation and 
enrolled in the study. Six children were non-randomly assigned to 1.5 atm and 100% oxygen, and the 12 
remaining children were non-randomly assigned to 1.3 atm and 24% oxygen. This unequal division of 
children among the sample groups occurred due to scheduling constraints and because one center (EM) 



only treated the 1.3 atm group (6 children) while the other center (DR) treated both the 1.3 atm (6 children) 
and the 1.5 atm (6 children) groups. All participants were diagnosed with autistic disorder from an 
independent psychologist, neurologist, psychiatrist, or developmental pediatrician and met the DSM IV 
criteria for autistic disorder [2]. Children with a diagnosis of Pervasive Developmental Disorder – Not 
Otherwise Specified (PDD-NOS) or Asperger Syndrome were excluded from this study. Children with a 
history of seizure disorder were also excluded. Written informed consent was obtained from the parents 
and, when possible, the child. The study and protocol were approved by the Liberty Institutional Review 
Board. Baseline Childhood Autism Rating Scale (CARS) scores were obtained to determine autism 
severity; degrees of autism were similar in both groups (see Table 1). During the study period, children 
were not allowed to begin any new therapies or stop any current therapies, including medications and 
supplements. The children in this study were recruited from two practices (DR and EM) in which 
antioxidant use and treatments to raise glutathione levels are common therapies. Because of this, many of 
the children were already taking supplements before the study began, such as folinic acid or 
methylcobalamin (see Table 1). No significant differences in supplement usage, age, or initial CARS score 
were found between the children in the 1.5 atm group as compared to the 1.3 atm group. 
Table 1. Baseline participant characteristics and supplement profiles 
 
Hyperbaric treatment protocol at 1.3 atm and 24% oxygen 
Twelve children (11 boys and 1 girl, mean age 6.2 ± 4.0 years, range 3–16 years) were assigned to 
separately receive hyperbaric therapy at approximately 1.3 atm and 24% oxygen in a monoplace hyperbaric 
chamber. Each child entered the chamber with a parent or other caregiver. Compression time to obtain a 
pressure of 1.3 atm was approximately 10 minutes. During this time the children equilibrated their middle 
ears by swallowing liquid, eating, or yawning. Oxygen at 10 liters per minute from an oxygen concentrator 
was mixed with room air and pumped into the chamber. This resulted in a final chamber oxygen 
concentration of approximately 24% as measured by an oxygen monitor. The child was monitored during 
the entire treatment cycle. After 45 minutes of 24% oxygen at 1.3 atm, the chamber was decompressed over 
approximately 10 minutes. This therapy was given 45 minutes daily for an average of 4.6 times per week 
over an average of a 9.0 week period, for a total of 40 treatments per child. 
 
Hyperbaric treatment protocol at 1.5 atm and 100% oxygen 
Six children (3 boys and 3 girls, mean age 7.7 ± 4.5 years, range 3–16 years) were assigned to separately 
receive hyperbaric therapy at 1.5 atm and 100% oxygen in a monoplace hyperbaric chamber. Each child 
entered the chamber with a parent or other caregiver. Compression time to obtain a pressure of 1.5 atm was 
approximately 15 minutes. During this time, the children equilibrated their middle ears by swallowing 
liquid, eating, or yawning. Each child was fitted with a rubber-neck collar and clear plastic hood through 
which 100% oxygen was delivered. The rubber-neck collar was applied before getting into the chamber and 
the plastic hood was attached after a pressure of 1.5 atm was attained. Two hoses, one for oxygen input and 
one for oxygen exit, were then attached to the hood. The oxygen was then turned on and entered the hood 
through one hose and exited through the second hose and was vented to outside the chamber. The chamber 
was pressurized with room air and the oxygen concentration of the chamber remained below 23% during 
the course of the treatment. The child was monitored during the entire treatment cycle. After 45 minutes of 
100% oxygen at 1.5 atm, the oxygen was turned off, the hood was removed, and the chamber was 
decompressed over approximately 10 minutes. This therapy was given 45 minutes daily for an average of 
4.7 times per week over an average of an 8.8 week period, for a total of 40 treatments per child. 
 
Blood for C-reactive protein and oxidative stress markers 
Immediately prior to the first hyperbaric treatment and within 24 hours of finishing the 40th (last) hyperbaric 
treatment, fasting blood specimens for measuring C-reactive protein (CRP) and oxidative stress profiles 
were drawn. The oxidative stress profiles were obtained and analyzed by SJJ and SM in a blinded fashion 
according to procedures previously described [50,51]. The CRPs were sent to LabCorp for analysis. The 
technicians at LabCorp were blinded to the fact that any of the submitted samples were for use in this 
study, and the same laboratory instrumentation and techniques were used to measure the before and after 
CRP samples. 
 



Clinical outcome measures 
Pre-treatment scores and post-treatment scores were calculated for each child using the Aberrant Behavior 
Checklist – Community (ABC-C), Social Responsiveness Scale (SRS), and the Autism Treatment 
Evaluation Checklist (ATEC). To determine outcomes, a parent or other caretaker filled out each scale 
prior to treatment, and after 10, 20, 30, and 40 hyperbaric sessions. 
The ABC-C is a 58-item questionnaire that assesses communication, reciprocal social interaction, play, and 
stereotyped behaviors [74]. It is used to evaluate the effects of medications and other therapeutic 
interventions and is scored from 0 ("not at all a problem") to 3 ("problem is severe in degree"). The ABC-C 
is widely and successfully used in clinical trials of autistic individuals [75,76]. For this study, in addition to 
scores in 5 subsets (irritability, social withdrawal (also termed lethargy), stereotypy, hyperactivity, and 
inappropriate speech), an overall score was also calculated. 
The SRS is a recently validated test of interpersonal behavior, communication, and stereotypical traits in 
autism [77]. It consists of five subscales: social awareness, social cognition, social communication, social 
motivation, and autistic mannerisms. The SRS measures the degree of social impairments in autistic 
children and is suitable for assessing treatment outcomes. In this study, a total raw score was obtained and 
raw scores were calculated for each subscale. 
The ATEC is a questionnaire that was developed by the Autism Research Institute to evaluate treatment 
efficacy in autistic individuals. It consists of four subscales labeled: Speech/Language/Communication, 
Sociability, Sensory/Cognitive Awareness, and Health/Physical/Behavior. The scores are weighted 
according to the response and the corresponding subscale. The higher the subscale and total scores, the 
more impaired the subject. A split-half reliability analysis on 1,358 checklists indicated high internal 
consistency among the questions within each subscale [78]. ATEC is used in some studies as an outcome 
measure [79,80]. It is designed to allow parents and physicians to assess outcomes of certain treatments 
commonly used in autistic individuals. In this study, scores were calculated for the total score and the four 
separate subscales. 
 
Safety Assessments 
In descending order, the most common side effects found during HBOT are barotrauma (2% incidence), 
sinus squeeze, serous otitis, claustrophobia, reversible myopia, and new onset seizure (which occurs in 1–3 
per 10,000 treatments) [12]. Before beginning the study, each child underwent a physical examination by 
either DR or EM; this included close examination of the ears and tympanic membranes. During each 
treatment, a parent or caregiver entered the chamber with each child. Throughout the treatment, children 
were monitored closely by the chamber operator for any signs of ear pain, and parents were instructed on 
how to recognize ear pain in their child. One child in the 1.5 atm group could not tolerate the pressure 
given during the first HBOT session, and the treatment had to be stopped after just several minutes (the 
pressure obtained in this session was approximately 1.1 atm). Examination of the child's ears did not 
demonstrate any barotrauma. However, the child's typanostomy tubes had recently fallen out; these were 
replaced before continuing the trial, and the child was able to finish 40 treatments without further incident. 
No other adverse events were found during this study, including barotrauma or seizures. All children 
finished 40 hyperbaric treatments. 
 
Data analysis 
All data are presented as means ± SDs. The data were prospectively collected and analyzed using 
SigmaStat software. Statistical differences in changes in each scale (ABC-C, SRS, and ATEC) and changes 
in CRP and oxidative stress markers between baseline versus end of 40 hyperbaric treatments were 
ascertained using the Student's t test with significance set at 0.05. 
 
Results 
Oxidative stress profiles 
Figure 1(a–d) lists the oxidative stress profile findings; the first column in each graph is the mean value for 
control children as described by James et al. [51] and is included as a standard reference (labeled as 
"control"). Mean plasma oxidized glutathione (GSSG) did not significantly change in either the 1.3 atm 
group (p = 0.557) or the 1.5 atm group (p = 0.583). Total plasma glutathione (tGSH) to GSSG ratio 
(tGSH/GSSG) (p = 0.146 at 1.3 atm; p = 0.072 at 1.5 atm) and free glutathione (fGSH) to GSSG ratio 



(fGSH/GSSG) (p = 0.040 at 1.3 atm; p = 0.076 at 1.5 atm) both decreased after HBOT at 1.3 atm and 1.5 
atm. Mean adenosine slightly increased at 1.3 atm (p = 0.588), and decreased at 1.5 atm (p = 0.078). 

Figure 1. Changes in mean blood values before and after hyperbaric therapy at 
both 1.3 atm and 1.5 atm. The first column in a-d is the mean value for control children as described by 
James et al. [51] and is included as a standard reference (labeled as "control"). P-values and blood levels 
are listed above the bar graphs. a: Changes in mean oxidized glutathione levels. b: Changes in mean 
tGSH/GSSG.c: Changes in mean fGSH/GSSG. d: Changes in mean adenosine levels 
 
CRP profiles 
Figure 2 shows the changes in mean CRP in both groups. In the 1.3 atm group, mean CRP level declined by 
89.5% from 6.1 ± 10.3 mg/L to 0.64 ± 0.87 mg/L (p = 0.123). Of note, 3 children had a mean starting CRP 
value of 21.8 ± 9.2 mg/L ("high CRP group"), which declined to 0.2 mg/L in each child (p = 0.052) after 
hyperbaric therapy. Analysis of the remaining 9 children ("low CRP group") demonstrated no significant 
change in mean CRP values (0.88 mg/L to 0.79 mg/L, p = 0.854). In the 1.5 atm group, mean CRP declined 
by 61.4% from 0.7 ± 0.5 mg/L to 0.27 ± 0.19 mg/L (p = 0.084). Examination of CRP in all 18 children in 
the study demonstrated that CRP declined by 88.4% from a mean starting value of 4.3 ± 8.7 mg/L to 0.5 ± 
0.7 mg/L (p = 0.021). 

Figure 2. Changes in mean CRP before and after hyperbaric therapy at both 1.3 
atm and 1.5 atm. P-values and blood levels are listed above the bar graphs. 
 
Clinical Outcomes 
1.3 atm group analysis 
Table 2 shows improvements in SRS (p = 0.046) and ATEC (p = 0.007) for the 12 children in the 1.3 atm 
group. Evaluation of the ABC-C, SRS, and ATEC subscales (Figure 3a–c) demonstrates significant 
improvements in SRS communication (p = 0.035); SRS motivation (p = 0.021); SRS mannerisms (p = 
0.011); ATEC speech/language/communication (p = 0.033); ATEC sensory/cognitive awareness (p = 
0.026); and ATEC health/physical/behavior (p = 0.012). 
Table 2. Aggregate mean scores for 12 children at 1.3 atm, 24% oxygen 

Figure 3. Changes in clinical scales at 1.3 atm and 24% oxygen. Declining scores 
on each scale indicate clinical improvements. Scores are listed above the bar graphs at baseline (0) and 
after every 10 treatments (10, 20,30, and 40). P-values are listed above the bar graphs. a:Changes in ABC-



C subscales at 1.3 atm and 24% oxygen. b:Changes in SRS subscales at 1.3 atm and 24% oxygen. c: 
Changes in ATEC subscales at 1.3 atm and 24% oxygen. 
 
1.5 atm group analysis 
Table 3 shows improvements in SRS (p = 0.035) and ATEC (p = 0.020) for the 6 children in the 1.5 atm 
group. Examination of the subscales (Figure 4a–c) demonstrates significant improvements in ABC-C social 
withdrawal (p = 0.008); SRS motivation (p = 0.018); ATEC speech/language/communication (p = 0.040); 
and ATEC sensory/cognitive awareness (p = 0.013). 
Table 3. Aggregate mean scores for 6 children at 1.5 atm, 100% oxygen 

Figure 4. Changes in clinical scales at 1.5 atm and 100% oxygen. Declining 
scores on each scale indicate clinical improvements. Scoresare listed above the bar graphs at baseline (0) 
and after every 10 treatments (10, 20, 30, and 40). P-values are listed above the bar graphs. a: Changes in 
ABC-C subscales at 1.5 atm and 100% oxygen. b: Changes in SRS subscales at 1.5 atm and 100% oxygen. 
c: Changes in ATEC subscales at 1.5 atm and 100% oxygen. 
 
Discussion 
To our knowledge, this study represents the first prospective study on the use of HBOT for children with 
autism. In this study, lower hyperbaric pressures were used than those traditionally employed (typically 
pressures of 2.0 atm and above [13]) for the treatment of most clinical indications. However, significant 
increases in oxygen delivery were obtained during this study. The oxygen concentration in room air at sea 
level (1 atm) is about 160 mmHg. The two study sites were located at approximately 500 and 900 feet 
above sea level (0.97–0.98 atm). Therefore, the oxygen delivery in the 1.3 atm group was approximately 
232 mmHg which is roughly 45% more than room air conditions. In the 1.5 atm group, the oxygen delivery 
was 1142 mmHg, or over 7 times more than room air conditions. The amount of oxygen delivered in the 
1.3 atm group is similar to the amount used in a previous study on HBOT in children with CP that utilized 
1.3 atm and room air pressure ("hyperbaric air") [26]. In that study, the authors commented that the amount 
of oxygen delivered at 1.3 atm was achievable with the use of "28% oxygen with a mask, without 
pressure"; however, this opinion did not account for the potential clinical effects of the increased 
atmospheric pressure delivered, because even low amounts of increased pressure may lead to significant 
clinical changes [44,81]. Furthermore, the authors argued that hyperbaric air at 1.3 atm was unlikely to 
provide clinical benefit(s) because the mechanism of action of HBOT in CP is thought to be due to the 
"penumbra phenomenon" and that a clinical effect due to "a pure pressure effect" did "not correspond to the 
rationale behind the hyperbaric oxygen treatment" [26]. Since the mechanism of action of HBOT in autism 
may be different than in CP [11], including decreasing inflammation (as reviewed in the background 
section of this paper), it is entirely possible that clinical benefits may arise from purely increasing the 
atmosphere pressure delivered, because increased pressure delivery without additional oxygen appears to 
decrease inflammation (as measured by an inhibition of interferon-gamma release), and delivery of oxygen 
by mask without any increase in pressure may actually increase inflammation (as measured by an increase 
in interferon-gamma release) [44]. Since HBOT consists of 2 independent variables (pressure and inspired 
oxygen concentration), comparison studies are needed in individuals with autism before determining that 



the clinical effects of 1.3 atm and 24% oxygen are similar to those obtained by delivering oxygen by mask 
alone without additional pressure. In addition, further studies are needed that evaluate not only the clinical 
effects of hyperoxia delivered by HBOT, but also the effects of increased atmospheric pressure, because 
each of these effects may lead to different clinical outcomes depending on the underlying disease 
pathophysiology. 
A primary goal of this study was to determine the effects of HBOT on oxidative stress markers in autistic 
children. Other objectives were to measure the effects of HBOT on CRP and changes in clinical symptoms. 
The final intention was to examine the safety of HBOT for use in autistic children. Of note, shorter duration 
hyperbaric treatment times (45 minutes) were used than what is traditional (60 minutes). This was due, in 
part, to scheduling constraints. 
 
Evaluation of the effects of HBOT on oxidative stress markers 
Recently, James et al. demonstrated that autistic children had lower levels of plasma reduced (active) GSH 
and increased levels of oxidized (inactive) GSH when compared to control children [51]. The mean 
tGSH/GSSG ratio in 73 control children was 28.2 ± 7.0 and in 80 autistic children was 14.7 ± 6.2 (p < 
0.0001). The mean fGSH/GSSG ratio was 7.9 ± 3.5 in control children and 4.9 ± 2.2 in the autistic children 
(p < 0.0001). The mean GSSG in control children was 0.24 ± 0.1 μmol/L and 0.40 ± 0.2 μmol/L in the 
autistic children (p < 0.0001) [51]. In a previous study, these same researchers demonstrated that the 
addition of 800 μg folinic acid, 1000 mg of betaine, and 75 μg/kg of injectable methylcobalamin raised 
tGSH/GSSG in 8 autistic children from 7.5 ± 2.3 to 28.7 ± 7.1 (p = 0.002) and lowered GSSG from 0.59 ± 
0.2 nmol/L to 0.25 ± 0.05 nmol/L (p = 0.008). These 8 children had some improvements in speech and 
cognition, and after these treatments, the levels of tGSH/GSSG and GSSG were both near the levels found 
in the control children [50]. 
In the current study, the mean initial tGSH/GSSG was 28.47 ± 4.59 in the 1.3 atm group and 44.68 ± 14.19 
in the 1.5 atm group (see Figure 1b). These values are close to or higher than the values found in the control 
children as described above and are higher than the values described in some autistic children [50,51]. 
These increased values might be due to the therapies implemented to raise glutathione levels, including 
folinic acid and methylcobalamin, which many of the children were taking prior to beginning the study. 
Examination of the 1.3 atm group demonstrates that 7 out of 12 children were taking folinic acid, 
methylcobalamin, or both. In the 1.5 atm group, 5 out of the 6 children were taking folinic acid, 
methylcobalamin, or both. Interestingly, analysis of changes in CRP and oxidative stress markers in the 
children taking these 2 supplements when compared to the children not taking these 2 supplements 
demonstrated no statistically significant difference in changes in CRP, GSSG, tGSH/GSSG, and 
fGSH/GSSG (data not shown) at both 1.3 atm and 1.5 atm. In addition, analysis of score changes on the 
ABC-C, SRS, and ATEC showed no statistically significant difference in the children taking either or both 
of these 2 supplements when compared to children not taking these (data not shown). In other words, 
children already taking folinic acid, methylcobalamin, or both had similar changes in markers of oxidative 
stress, CRP, and clinical outcomes as children not taking these supplements. 
In both the 1.3 atm and 1.5 atm groups, after hyperbaric treatment, the ratios of tGSH/GSSG and 
fGSH/GSSG were both close to the values described by James et al. in control children (see Figure 1b and 
1c) and were still higher than the ratios found in most autistic children [51]. Most importantly, from an 
oxidative stress standpoint, the GSSG levels in both the 1.3 atm and 1.5 atm groups did not significantly 
change with treatment and were very near to the GSSG levels found in control children (see Figure 1a). 
Plasma GSSG is a reliable marker of intracellular oxidative stress because it is only exported from cells 
when intracellular levels exceed the redox capacity. Furthermore, plasma GSSG levels are a better indicator 
of intracellular oxidative stress than tGSH and fGSH [82]. Therefore, HBOT at the pressures utilized in this 
study did not appreciably worsen intracellular oxidative stress as measured by changes in plasma GSSG. In 
addition, there was a trend to lower adenosine levels in the 1.5 atm group (p = 0.078). Elevated adenosine 
has been described in a subgroup of children with autism and typically leads to elevated S-
adenosylhomocysteine (SAH). This is concerning because SAH inhibits most cellular methyltransferases 
[51]. Therefore, lowering adenosine levels could be of clinical significance in a subgroup of autistic 
children with elevated adenosine levels. 
Even though children in this study had similar changes in oxidative stress markers, CRP, and clinical 
outcomes whether or not they were taking folinic acid and/or methylcobalamin, therapies to raise 
glutathione levels in autistic children [50] before initiating HBOT at the pressures used in this study appear 



prudent. Furthermore, the use of antioxidants [83] might be beneficial in patients with conditions of 
increased oxidative stress before HBOT is contemplated, especially since antioxidant supplementation is 
generally recognized as safe. Several antioxidant supplements are known to attenuate oxidative stress 
induced by higher pressure HBOT (above 2.5 atm) including α-lipoic acid [48], melatonin [84], N-
acetylcysteine [85,86], Vitamin E [87], riboflavin [88], selenium [87,88], and glutathione [89]. 
Furthermore, in two double-blind studies, treatment with an antioxidant, when compared to a placebo, 
improved behavior in some autistic children [90,91]. 
 
Evaluation of the effects of HBOT on C-reactive protein 
Since some autistic children have evidence of neuroinflammation [36-38] and gastrointestinal inflammation 
[39,40], and since HBOT is known to possess anti-inflammatory properties [43,92] and can decrease both 
neuroinflammation [42] and gastrointestinal inflammation [46,47], changes in a marker of inflammation 
were quantified during this study. CRP was chosen (see Figure 2) because it is typically elevated with 
inflammation [93] and is readily available. In 3 children from the 1.3 atm group with a very high initial 
CRP, large improvements in mean CRP were found after treatment (p = 0.052). The remaining 9 children 
in the 1.3 atm group had a small but non-significant improvement of 0.09 mg/L. However, the initial mean 
CRP in these 9 children was 0.88 mg/L which left little room for improvement. The 1.5 atm group showed 
an improvement in mean CRP of 0.43 mg/L (p = 0.084). However, since the children in the 1.5 atm group 
started with low initial CRP levels, dramatic improvements in CRP in these children were not possible. 
Only those children with an initial high CRP could experience dramatic improvements, which is what was 
found in this study. Pooling the data for changes in CRP values from all 18 children in this study 
demonstrated a significant improvement after hyperbaric therapy (p = 0.021). Further evaluation of the 
effects of hyperbaric therapy on inflammation and inflammatory markers in autistic children, especially at 
varying pressures and oxygen concentrations, is warranted. 
 
Evaluation of the effects of HBOT on clinical outcomes 
Another outcome of this study was to prospectively examine if the use of hyperbaric therapy led to 
improvements in clinical symptoms. From our clinical experience with using HBOT in autistic children, 
some parents have noted improvements in their children. In this study, an inventory of clinical symptoms 
affected by HBOT was created to help determine if a larger controlled trial was justified, and to investigate 
which assessment tools might best be utilized in designing a larger study. 
The measurements of these clinical outcomes did have some inherent limitations and weaknesses. The use 
of parent-rated scales and the fact that parents were not blinded to the type of therapy given to their child 
might have introduced some bias. Furthermore, there was no placebo or control group. Therefore, the 
improvements found in this open-label study could be due merely to chance or to the natural development 
of the children. In addition, it is possible that any clinical improvements observed could have occurred as a 
result of the increased close interaction between the child and parent/caregiver, or motivation and/or 
enthusiasm that may have developed in the parent/caregiver during the course of the treatments. Because 
this was a pilot study, the sample sizes were small which makes it difficult to make adequate and 
meaningful comparisons between the 2 different pressures and oxygen concentrations used. Due to these 
issues, a larger double-blind, prospective study that includes a control group and more objective outcome 
measures is warranted. 
However, given these limitations, significant improvements in certain areas were found in both the 1.3 atm 
and the 1.5 atm groups. These improvements were seen in diverse areas including irritability, social 
withdrawal, hyperactivity, motivation, speech, and sensory/cognitive awareness (see Figures 3 and 4). This 
range of improvements was somewhat unexpected, but might be explained by the fact that many children 
with autism have cerebral hypoperfusion which can often vary in location from child to child [35] and 
correlates anatomically [11] with many core autistic symptoms including repetitive, self-stimulatory 
behavior [94], and impairments in language [95] and social interaction [34]. It is possible that HBOT might 
help overcome the effects of cerebral hypoperfusion by providing more oxygen to the brain [21,41], and by 
causing angiogenesis over time [24,92]. As previously noted, Heuser et al. showed an improvement in 
cerebral hypoperfusion as measured by SPECT scans in an autistic child after hyperbaric therapy at 1.3 atm 
[31]. Because HBOT may improve assorted areas of cerebral hypoperfusion, and since these areas may 
additionally differ in location from child to child, various clinical outcomes could occur. Further research 
into this area, utilizing HBOT combined with pre- and post-hyperbaric SPECT scans, might be useful in 



exploring this hypothesis further. A weak trend towards increased inappropriate speech in the 1.3 atm 
group (see Figure 3a) was observed; this finding was not seen in the 1.5 atm group (see Figure 4a). Further 
study on the effects of HBOT at 1.3 atm on inappropriate speech is warranted. 
 
Evaluation of the Safety of HBOT in Children with Autism 
The use of HBOT for children is generally regarded as safe, even at pressures of 2.0 atm for 2 hours per 
day [32]. However, to our knowledge, the safety of HBOT for autistic children had not been previously 
evaluated. Therefore, throughout each hyperbaric session, the children were intensively monitored. In 
addition, a parent or caregiver accompanied each child into the chamber, which provided additional 
monitoring. During this study, no significant adverse events were seen and the treatments were well 
tolerated. These results suggest that the hyperbaric pressures and oxygen concentrations used in this study 
are safe in children with autism. 
Conclusion 
 
This prospective open-label pilot study in children with autism indicates, as measured by changes in plasma 
GSSG, that HBOT ranging from 1.3 to 1.5 atm and 24% to 100% oxygen was not significantly associated 
with increased intracellular oxidative stress. The use of therapies to raise glutathione levels and lower 
oxidative stress before beginning HBOT in individuals with autism appears prudent. Among children with 
high initial CRP, hyperbaric therapy led to a large improvement in CRP levels; this suggests that 
inflammation in these children improved with treatment. Improvements in clinical outcomes as measured 
by several scales were observed at both 1.3 atm and 1.5 atm. However, because this study was open-label, 
conclusions about the efficacy of HBOT as a treatment for autistic children cannot be drawn at this time. 
Definitive statements regarding the efficacy of HBOT for the treatment of children with autism must await 
results from future double-blind, controlled trials. Finally, HBOT was safely administered to autistic 
children in this study, and all participants were able to finish 40 HBOT sessions without any major adverse 
events. 
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